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Design of Planar Circuit Structures with an
Efficient Magnetostatic-Field Solver
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Abstract—We introduce a highly efficient field solver for the
calculation of the quasi-static magnetic field in order to design
lossless planar circuit elements with nearly arbitrary shape. The
field solver is based on a finite-difference (FD) formulation of a
scalar magnetic potential, using potential partitioning surfaces
(PPS’s). The modeling of the quasi-static fields in distributed
circuit elements leads to the development of lumped element
equivalent circuits in a very fast and efficient way. For structures
with sizes far below the wavelength, the equivalent circuits can
be derived in a direct way. For the field modeling of larger
structures, the quasi-static field solver can be used in a hybrid
full-wave analysis as well. Numerical examples are presented for
different planar-circuit elements.

Index Terms—CAD, finite-difference magnetic field, quasi-
static.

I. INTRODUCTION

FOR THE design of planar-circuit elements, the given
structures are mostly extracted to a lumped element circuit

model. In many applications, it is sufficient to divide the circuit
structure into conductor elements and substructures, which
contain discontinuities and junctions between the conductor
elements. While the conductor elements are modeled easily
by two-dimensional (2-D) field solvers, the three-dimensional
(3-D) field modeling, which leads to high computation effort,
has to be done only for the substructures between the con-
ductors. The lumped-element circuits of these structures can
be developed efficiently by calculating the quasi-static electric
and magnetic fields, because these substructures are far below
the given wavelengths. On the other hand, the substructures of
the given circuit may have a complicated geometry. With that,
a flexible computer-aided design (CAD) tool for the efficient
simulation of the quasi-static fields in lossless planar circuit
structures of arbitrary geometry is required.

The demand for a method of simulating the field in struc-
tures with arbitrary geometry leads to a space discretizing
method like the finite-difference (FD) method [1], [2]. The
structure of the circuit elements is discretized according to
Yee’s scheme [2]. For the simulation of the electrostatic field,
Maxwell’s equations are reduced to a Poisson equation of the
electrostatic potential. This reduction of considering only a
scalar potential instead of the three components of the electric
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field leads to considerable savings in computation time and
storage. With that, capacitances of various circuit elements
are very efficiently calculated.

While the electrostatic field can be calculated in a fast
way by means of a scalar potential, the calculation of the
magnetic field cannot be directly performed in such a simple
way. This is because in contrast to the electric field, the contour
integral of the magnetic field does not disappear if a conductor
is enclosed. Thus, in general, this would mean to calculate
the field in terms of three components which makes the
computational effort increase. The law of Biot–Savart cannot
be used for the calculation because the current distribution is
unknown.

II. THE PPS-FD FIELD SOLVER

In this paper, we present a potential-partitioning-surface
finite-difference (PPS-FD) field solver for the efficient simu-
lation of the quasi-static magnetic field in arbitrary lossless
planar-circuit structures. Using this method, we can easily
calculate the inductances in 3-D structures for generating their
lumped-element models.

Compared with an FD full-wave analysis, the simulation of
the magnetic field with the PPS-FD solver requires less than
1/20 of the central processing unit (CPU) time and 1/3 of the
memory. The solver is also applicable for a hybrid dynamic-
static FD method for efficient field simulation in structures of
larger size in relation to the wavelength, as has been presented
in [3] and [4].

The PPS-FD-solver is based on the introduction of PPS’s
into the 3-D structure, connecting each conductor in the
structure with the outer boundary in a way that each possible
integration path around the conducting material crosses the
PPS. Fulfilling this requirement, the choice of the exact
position of the PPS is arbitrary. Assuming the case of a lossless
3-D structure, the consideration of the field is reduced to the
spatial region around the conducting material. This region is
cut by the PPS so that the resulting subregion is bordered by
two more surfaces which are both sides of the PPS. In this
newly defined domain, the magnetic field is irrotational and,
hence, it can be described by a scalar magnetic potential,
in analogy to the electrostatic case as follows:

(1)

For the description of the potential in the subregions, the
divergence-free magnetic field yields a simple differential
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Fig. 1. Example for the incorporation of a PPS into a coplanar structure.
Magnetic walls occur as equipotential surfaces with the potentialsM1, M2,
andM3, which are separated by the PPS and by the metallization.

equation, which leads to a fast numerical algorithm for the
calculation of the potential as follows:

(2)

In Fig. 1, the incorporation of a PPS into a coplanar structure
is shown. In this example, the structure is defined in a box
of magnetic walls.

For monolithic microwave integrated circuit (MMIC) design
problems, we assume an ideal skin effect. This means that for
the calculation of the quasi-static fields, we define the surface
of each metallization as an electric wall in which there exists
no normal magnetic-field component.

With that, we derive the following demands for the scalar
magnetic potential at the boundaries. At metallic surfaces
(electric walls), the local derivative of the potential in nor-
mal direction to a metallization is zero. This enforces the
disappearing of the normal magnetic field. Magnetic walls
are equipotential surfaces. With that, the tangential magnetic-
field components disappear. As can be seen in Fig. 1, the
different currents in the conducting material lead to the relating
difference between the potentials , , on the different
equipotential surfaces which are separated by the metallization
and the PPS.

There are new boundary conditions on the PPS’s which are
sufficient to describe the influence of the PPS. The integration
of the field around a conductor from one side of the PPS to
its other side yields a step in potential when passing this PPS.
Due to Ampere’s law, the integration of the magnetic field
from a point on one side of the PPS to the point on
the other side yields the difference of the potentialsat these
points (see Fig. 1) [5]. This means that the difference between
the potential on one side and the potential on the other side
of the partitioning surface is equivalent to the current in the
conductor as follows:

(3)

While the potential is noncontinuous at the partitioning
surface, all the derivatives of have to be continuous.

This results from the requirement that the magnetic-field
distribution is independent of the choice of the local position
of the PPS at the conductor

(4)

(for ). Those properties lead to the unique de-
scription of the magnetic potential. The calculation of the
potential and the magnetic field can now be performed in a
fast numerical way.

The differential equation (2) of the potential is realized
according to a FD scheme in a Cartesian mesh of elementary
cells. The potentials of the elementary cells are defined on
the hyphens of the cells. On the way, the derivatives of first
order of are localized exactly between the potentials of
neighboring cells, is the index of the considered elementary
cell. , , and are the index of the neighbored cells in positive

-, -, -directions. As an example, a PPS is defined between
the cells and . The step in potential is inserted into the
corresponding FD term as follows:

(5)

According to the FD scheme, the differential equation
(2) is applied in form of the linear equation (5) to each
mesh cell, combining the potentials of their neighbored
cells. With that, the given structure yields a solvable
system of equations of this type. The steps in potential
at the PPS can be seen as the incorporation of local
sources I into the FD system. As with the potentials at
magnetic walls, these potential steps can be collected into
a source vector in the equation system. The system is
then solved numerically, analogous to the FD description
system for the electrostatic field. The solution of the
magnetostatic system of equations yields a vector in which
all the potentials of the structures cells are included.
After that, the magnetostatic field can be determined by
the FD quotient of the magnetic potential distribution
according to (1).

III. N UMERICAL RESULTS

In the following, we present numerical results of the PPS-FD
solver. The PPS-method has been realized in form of a Fortran
program and is compared to an FD-full-wave analysis.

In a first example, we consider the magnetostatic field in a
coplanar spiral inductor on silicium substrate. As is shown in
Fig. 2, the PPS connects the spiral conductor vertically to the
ground plane. The conductor route leading to the center of the
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Fig. 2. The incorporation of a PPS into a coplanar spiral structure.

Fig. 3. Coplanar spiral inductor with two air bridges, presentation in the
spiral plane.

Fig. 4. FieldHx of the spiral inductor, presented in the spiral plane.

spiral is crossed by the spiral in the form of two air bridges.
By following the spiral route, the PPS crosses itself below
the air bridges. In Fig. 3, we see the spiral structure with its
discretization steps. The discretization in the inner space is not
shown in this figure. In Fig. 4, the component in the spiral
plane is shown, which is numerically obtained by the PPS-
FD solver. Fig. 5 shows the component in a plane 10m
below the spiral plane. Though this plane is cut by the PPS, no
discontinuities in the field distribution can be seen. This proves
that the numerically computed magnetic field is independent
of the PPS position as it is necessary on physical reasons.

Fig. 5. FieldHx in the spiral inductor, 10 m below the spiral plane.

Fig. 6. Lumped-element equivalent-circuit model of the spiral structure in
the frequency range of
C � 1=
L.

Fig. 7. Absolute values ofS11 and S12 calculated by the PPS-method,
accurate reference solutions calculated by an FDFD.

The structure is discretized into half-a-million mesh cells.
For comparison, the computation of the magnetic filed with a
FD full-wave analysis in frequency domain (FDFD) requires
approximately 40 h CPU time on a DEC 3000/800 Alpha
workstation. In contrast to the full-wave analysis, the PPS-FD
solver requires only approximately 1 h for the magnetostatic
field of the spiral structure. This is the same low computational
effort as for the analysis of the electrostatic field. Thus, by
using the PPS-FD solver for extracting the low-frequency
lumped-element model of the spiral structure, we have a
reduction in computation time to 2.5%. With higher cell
numbers there would even be a higher reduction. The required
storage is reduced to 33%.

We derive the lumped-element parameters of the equivalent-
circuit model of the spiral structure, as is shown in Fig. 6. It
is sufficient for the description of the circuit characteristics in
the frequency range of .

By choosing electric walls at the gates of the spiral structure,
we realize a short circuit at the gates. The excitation of the
field is done by implementing a step in potential at the PPS.
After calculating the quasi-static magnetic-field, the inductance
of the spiral structure is easily calculated by calculating the
magnetic flux . It is derived by integrating the normal
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Fig. 8. Phasesj of S11 and S12 calculated by the PPS-method, accurate
reference solutions by FDFD analysis.

Fig. 9. CPU time of field simulations in dependence of the numbern of
cells of the discretization. Comparison of the PPS and the FDFD method
(Data produced on a DEC 3000/800 Alpha workstation).

magnetic-field component along the PPS. This is because
all flux lines which surround the conductor are passing the
PPS. In case of the spiral structure, we obtain the inductance

nH.
For the calculation of the capacitance, an open circuit

at the gates is realized by choosing magnetic walls at the
gates. The capacity of the structure is derived by integrating
the normal quasi-static electric field along the surface of the
metallization.

From the equivalent-circuit model we derive the-
parameters which are shown in Figs. 7 and 8. They are
compared to the -parameters which were calculated by the
FDFD full-wave analysis with 40 times higher computation
time. As can be seen, the-parameters in the frequency range
up to 5 GHz are of very good agreement in phase and absolute
value. It is obvious that the results approximate to each other
only under the condition that time delay of the waves in the
spiral structure has no considerable influence. As can be seen,
the results are of good agreement in the frequency range up to
5 GHz. In this frequency range, the wavelength is more than
ten times higher than the length of the spiral inductor.

For estimating the efficiency of the PPS method, we com-
pare the computation times between the PPS method and the
FD full-wave analysis. For the comparison we use the same
discretization for the simulations with both methods.

Fig. 9 shows the CPU time of the methods in dependence of
the number of cells which were used for the simulations. The

Fig. 10. Microstrip bend with edge compensation, presentation in the mi-
crostrip plane (all sizes in 100�m).

Fig. 11. FieldHx of the microstrip bend in the microstrip plane.

CPU time of the PPS simulations is more than one decade
lower than the CPU time of the FDFD simulations. Addi-
tionally, it is also increasing more slowly with an increasing
number of cells for the discretization. This means that the
benefits of the PPS method are increasing with the demand of
a higher accuracy in the calculations.

The comparison of the PPS method with the conventional
FDFD method shows that the efficiency of the PPS method is
considerably higher due to the high reduction in computation
time. This is true also for the storage which is related to
the mesh size . Due to sparsity, the matrix size of both
the conventional and hybrid approach grows linearly with.
However, due to the simplified mathematics in the static case,
this type of analysis consumes only 33% of the corresponding
full-wave problem.

As a further example, we consider a microstrip bend
with edge compensation, as can be seen in Fig. 10. The

PPS is again connecting the microstrip conductor to the ground
plane. While the distance of the microstrip line to the ground
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Fig. 12. FieldHx of the microstrip bend, 15 m below the microstrip plane.

Fig. 13. Field deviations�Hx between the field of the symmetrical and
unsymmetrical microstrip bend in the microstrip plane.

plane is 100 m, the distance of the line to the upper boundary
of the box is 500 m. Fig. 11 shows the calculated magne-
tostatic field of the structure in the microstrip plane. Fig. 12
shows the calculated field 15m below the microstrip plane.

For further verification of our results, we also calculated the
magnetostatic field for a triplate bend with edge compensation,
which is identical to the microstrip bend of Fig. 10, but with
symmetry to the -axis. The magnetic field in this structure
can be easily calculated according to a method in [6], which
also uses a scalar potential. This method has the same high
efficiency, but is restricted to nearly symmetrical structures.
It is assumed that the field is nearly symmetrical to the
metallization plane. We now compare the results of the PPS
method to results of the method of [6] investigating the
same computation effort. Without using PPS, this method is
only restricted to structures of approximate symmetry to the
metallization plane like the triplate structure. In this case, the
results of the methods were nearly identical with a relative
difference of 10 %. While the accuracy of the PPS method
is not dependant of the structure’s geometry, the assuming of
a symmetric field for the unsymmetric microstrip bend would
lead to an unacceptable field deviation, as can be seen in
Fig. 13.

The -parameters of the microstrip bend were obtained by
calculating the lumped-element parameters of the equivalent-
circuit model, as shown in Fig. 14. This model is sufficient for
the frequency range of . In Fig. 15, the absolute
value of the -parameter is shown. The results are compared
to accurate simulation results by use of an FD full-wave
analysis. The deviations of the results are lower than 2% in
the whole frequency range. In the range of higher frequencies,

Fig. 14. Lumped-element equivalent-circuit model of the microstrip bend in
the frequency range of!C � 1=!L.

Fig. 15. Absolute values ofS11, calculated by the PPS method, reference
solutions by FD full-wave analysis.

the approximation of a quasi-static field again leads to a little
increase of the deviations.

IV. CONCLUSION

We present a highly efficient PPS-FD solver for the fast
calculation of the magnetostatic field. The PPS method leads
to the calculation of a well-defined scalar magnetic potential.
It is applicable without restriction to all types of lossless
3-D structures. Using the PPS, the numerical effort for the
FD calculation of the quasi-static magnetic field is as low
as for the electrostatic field. Compared to the FD method in
frequency domain, the effort on CPU time for the magnetic-
field simulation is reduced to less than 1/20, and the storage
requirement decreases to 1/3. The PPS method can be used
for calculating inductances and for the application in a hybrid
dynamic-static FD method.
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